图书介绍
计算塑性力学【2025|PDF下载-Epub版本|mobi电子书|kindle百度云盘下载】

- 俞茂宏,李建春编著 著
- 出版社: 杭州:浙江大学出版社
- ISBN:9787308083560
- 出版时间:2012
- 标注页数:529页
- 文件大小:81MB
- 文件页数:556页
- 主题词:计算力学:塑性力学-英文
PDF下载
下载说明
计算塑性力学PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Introduction1
1.1 Elasto-Plastic Finite Elements1
1.2 Bounds and Region of the Convex Yield Surface3
1.3 Unified Strength Theory and its Implementati on in Computer Codes4
1.4 The Effect of Yield Criteria on the Numerical Analysis Results7
1.5 Historical Review:With Emphasis on the Implementation and Application of Unified Strength Theory12
1.6 Brief Summary17
References19
2 Stress and Strain29
2.1 Introduction29
2.2 Stress at a Point,Stress Invariants29
2.3 Deviatoric Stress Tensor and its Invariants31
2.4 Stresses on the Oblique Plane33
2.4.1 Stresses on the Oblique Plane33
2.4.2 Principal Shear Stresses33
2.4.3 Octahedral Shear Stress35
2.5 From Single-Shear Element to Twin-Shear Element37
2.6 Stress Space38
2.7 Stress State Parameters42
2.8 Strain Components45
2.9 Equations of Equilibrium46
2.10 Generalized Hooke's Law46
2.11 Compatibility Equations48
2.12 Governing Equations for Plane Stress Problems49
2.13 Governing Equations in Polar Coordinates50
2.14 Brief Summary51
References52
3 Material Models in Computational Plasticity53
3.1 Introduction53
3.2 Material Models for Non-SD Materials(Metallic Materials)55
3.2.1 Hydrostatic Stress Independence55
3.2.2 The Tensile Yield Stress Equals the Compressive Yield Stress56
3.2.3 Sixfold Symmetry of the Yield Function56
3.2.4 Convexity of the Yield Function57
3.2.5 Bounds of the Yield Function for Non-SD Materials58
3.3 Material Models for SD Materials66
3.3.1 General Behavior of Yield Function for SD Materials66
3.3.1.1 Six Basic Experimental Points for SD Materials66
3.3.1.2 Threefold Symmetry of the Yield Function66
3.3.1.3 Convexity of the Yield Function67
3.3.2 Three Basic Models for SD Materials67
3.4 Multi-Parameter Criteria for Geomaterials70
3.4.1 Multi-Parameter Single-Shear Failure Criterion70
3.4.2 Multi-Parameter Three-Shear Failure Criterion71
3.4.3 Multi-Parameter Twin-Shear Failure Criterion74
3.5 Bounds and the Region of the Convex Yield Function75
3.6 Brief Summary77
References78
4 Unified Strength Theory and its Material Parameters81
4.1 Introduction81
4.2 Mechanical Model of Unified Strength Theory82
4.3 Mathematical Modelling and the Determination of the Material Parameters of the Unified Strength Theory85
4.4 Mathematical Expression of the Unified Strength Theory86
4.5 Special Cases of the Unified Strength Theory87
4.5.1 Special Cases of the Unified Strength Theory(Varying b)87
4.5.2 Special Cases of the Unified Strength Theory(Varyinga)89
4.6 Other Formulations of the UST and Material Parameters92
4.6.1 UST with Principal Stress and Compressive Strength(σ1,σ2,σ3,a,σc)92
4.6.2 UST with Stress Invariant and Tensile Strength F(I1,J2,θ,σt,a)93
4.6.3 UST with Stress Invariant and Compressive Strength F(I1,J2,θ,a,σc)94
4.6.4 UST with Principal Stress and Cohes ive Parameter F(σ1,σ2,σ3,C0,?)94
4.6.5 UST with Stress Invariant and Cohesive Parameter F(I,J2,θ,C0,?)95
4.7 Other Material Parameters ofthe Unified Strength Theory95
4.7.1 Material Parameters β and C are Determined by Experimental Results of Uniaxial Tension Strength σt and Shear Strength τ096
4.7.2 Material Parameters β and C are Determined by Experimental Results of Uniaxial Compressive Strength σc and Shear Strength τ096
4.7.3 Material Parameters β and C are Determined by Experimental Results of Uniaxial Compressive Strength σc and Biaxial Compressive Strength σcc97
4.7.4 Material Parameters β and C are Determined by Experimental Results of Uniaxial Compressive Strength σc and Biaxial Compressive Strength σcc97
4.7.5 Material Parameters β and C are Determined by Experimental Results of Uniaxial Compressive Strength σc and Biaxial Compressive Strength σcc97
4.8 Three-Parameter Unified Strength Theory98
4.9 Stress Space and Yield Loci ofthe UST98
4.10 Yield Surfaces of the UST in Principal Stress Space102
4.11 Extend of UST from Convex to Non-Convex107
4.12 Yield Loci of the UST in Plane Stress State108
4.13 Unified Strength Theory in Meridian Plane112
4.14 Extend of UST from Linear to Non-Linear UST114
4.15 Equivalent Stress of the Unified Strength Theory116
4.15.1 Equivalent Stresses for Non-SD Materials117
4.15.2 Equivalent Stresses for SD Materials117
4.15.3 Equivalent Stresses of the Unified Yield Criterion117
4.15.4 Equivalent Stress of the Unified Strength Theory118
4.16 Examples119
4.17 Summary122
References125
5 Non-Smooth Multi-Surface Plasticity129
5.1 Introduction129
5.2 Plastic Deformation in Uniaxial Stress State130
5.3 Three-Dimensional Elastic Stress-Strain Relation132
5.4 Plastic Work Hardening and Strain Hardening133
5.5 Plastic Flow Rule136
5.6 Drucker's Postulate-Convexity of the Loading Surface137
5.7 Incremental Constitutive Equations in Matrix Formulation141
5.8 Determination of Flow Vector for Different Yield Functions144
5.9 Singularity of Piecewise-Linear Yield Functions146
5.10 Process of Singularity of the Plastic Flow Vector151
5.11 Suggested Methods153
5.12 Unified Process of the Corner Singularity156
5.12.1 Tresca Yield Criterion156
5.12.2 Mohr-Coulomb Yield Criterion157
5.12.3 Twin-Shear Yield Criterion157
5.12.4 Generalized Twin-Shear Yield Criterion157
5.13 BriefSummary159
References160
6 Implementation of the Unified Strength Theory into FEM Codes163
6.1 Introduction163
6.2 Bounds of the Single Criteria for Non-SD Materials165
6.3 Bounds of the Failure Criteria for SD Materials166
6.4 Unification of the Yield Criteria for Non-SD Materials and SD Materials168
6.5 Material Models170
6.6 Program Structure and its Subroutines Relating to the Unified Strength Theory:INVARY,YIELDY,FLOWVP172
6.6.1 Subroutine"Invar"172
6.6.2 Subroutine"Invary"174
6.6.3 Subroutine"Yieldy"175
6.6.4 Subroutine"Criten"176
6.7 Brief Summary178
References178
7 Examples of the Application of Unified Elasto-Plastic Constitutive Relations183
7.1 Introduction183
7.2 Plane Stress Problems184
7.2.1 Elasto-Plastic Analysis of a Cantilever Beam184
7.2.2 Elasto-Plastic Analysis of a Trapezoid Structure under Uniform Load187
7.3 Plane Strain Problems188
7.4 Spatial Axisymmetric Problems190
7.4.1 Analysis of Plastic Zone for Thick-Walled Cylinder190
7.4.2 Analysis for Limit-Bearing Capacity of a Circular Plate193
7.4.3 Truncated Cone under the Uniform Load on the Top195
7.5 Brief Summary197
References198
8 Strip with a Circular Hole under Tension and Compression199
8.1 Introduction199
8.2 Plastic Analysis of a Strip with a Circular Hole for Non-SD Material200
8.3 Elasto-Plastic Analysis of a Strip with a Circular Hole for SD Material under Tension203
8.4 Plastic Zone of a Strip with a Circular Hole for SD Material under Compression204
8.5 Comparison of Numerical Analysis with Experiments205
8.6 Elasto-Plastic Analysis of a Strip with a Circular Hole for a Special SD Material:Concrete207
8.7 Brief Summary208
References211
9 Plastic Analysis of Footing Foundation Based on the Unified Strenghth Theory213
9.1 Introduction213
9.2 Effect of Yield Criterion on the Limit Analysis of Footing216
9.3 Elasto-Plastic Analysis of Foundation Using UST218
9.4 Plastic Analysis of Strip Foundation Using UST220
9.5 Plastic Analysis of Circular Foundation Using UST226
9.5.1 Unified Characteristics Line Field of Spatial Axisymmetric Problem226
9.5.2 Numerical Simulation of Spatial Axisymmetric Problem227
9.5.3 Effect of UST Parameter ? on the Spread ofShear Strain230
9.6 Effect of UST Parameter b and ? on the Spread ofShear Strain232
9.7 Brief Summary233
References234
10 Underground Caves,Tunnels and Excavation of Hydraulic Power Station239
10.1 Introduction239
10.2 Effect of Yield Criterion on the Plastic Zone for a Circular Cave241
10.3 Plastic Zone for Underground Circular Cave under Two Direction Compressions242
10.3.1 Material Model243
10.3.2 Elastic Bearing Capacity244
10.3.3 Lasto-Plastic Analysis245
10.3.4 Comparison of Different Criteria246
10.4 Laxiwa Hydraulic Power Plant on the Yellow River249
10.5 Plastic Analysis for Underground Excavation at Laxiwa Hydraulic Power Station252
10.5.1 Strength of the Laxiwa Granite252
10.5.2 Plastic Zones Around the Underground Excavation Using the Single-Shear and Twin-Shear Theories254
10.5.3 Plastic Zones Around the Underground Excavation with Four Yield Cone Criteria255
10.6 The Effect of Failure Criterion on the Plastic Zone of the Underground Excavation256
10.7 Three Dimension Numerical Modeling of Underground Excavation for a Pumped-Storage Power Station257
10.8 Dynamic Response and Blast-Resistance Analysis of a Tunnel Subjected to Blast Loading262
10.9 Brief Summary264
References266
11 Implementation of the Unified Strength Theory into ABAQUS and its Application269
11.1 Introduction269
11.2 Basic Theory270
11.2.1 Expression of the Unified Strength Theory270
11.2.2 The General Expression of Elastic-Plastic Increment Theory271
11.3 ABAQUS UMAT(User Material)272
11.3.1 General Introduction of UMAT272
11.3.2 Interface and Algorithm of UMAT273
11.3.3 Elastic and Plastic State273
11.3.4 Constitutive Relationship Integration(Stress Update Method)275
11.3.5 Tangent Stiffness Method277
11.3.6 Treatment of the Singular Points on the Yield Surface277
11.4 Typical Numerical Example277
11.4.1 Model Conditions277
11.4.2 Comparison of 2D and 3D Solution from ABAQUS278
11.4.3 Results from UMAT of the United Strength Theory278
11.5 Engineering Applications281
11.5.1 Project Background and Material Parameters281
11.5.2 FEM Mesh and Boundary Condition282
11.5.3 Results of Analysis282
11.6 Conclusions286
References287
12 2D Simulation of Normal Penetration Using the Unified Strength Theory289
12.1 Introduction289
12.2 Penetration and Perforation291
12.3 Constitutive Model of Concrete293
12.4 Penetration and Perforation of Reinforced Concrete Slab301
12.5 Perforation of Fibre Reinforced Concrete Slab305
12.6 High Velocity Impact on Concrete Slabs Using UST and SPH Method309
12.6.1 Material Model for the Concrete Slab310
12.6.2 The Failure Surface310
12.6.3 The Elastic Limit Surface312
12.6.4 Strain Hardening313
12.6.5 Residual Failure Surface313
12.6.6 Damage Model313
12.7 Numerical Example314
12.8 Brief Summary317
References318
13 3D Simulation of Normal and Oblique Penetration and Perforation321
13.1 Introduction321
13.2 Simulation of Normal Impact Process321
13.3 Simulation of Oblique Impact Process325
13.4 Conclusions330
References331
14 Underground Mining333
14.1 Introduction333
14.2 Elastic-Brittle Damage Model Based on Twin-Shear Theory336
14.2.1 Damage Model336
14.2.2 Three-Dimensional Damage Model336
14.3 Non-Equilibrium Iteration for Dynamic Evolution338
14.4 Numerical Simulation of Caving Process Zone340
14.4.1 Introduction to Block Cave Mining340
14.4.2 Geometry and Undercut Scheme340
14.4.3 Result of Numerical Simulation341
14.5 Numerical Simulation for Crack Field Evolution in Long Wall Mining344
14.5.1 Geometry and FEM Model344
14.5.2 Evolution of Crack Field in the Roof345
14.5.3 Results of Displacement and Stress346
References348
15 Reinforced Concrete Beam and Plate349
15.1 Introduction349
15.2 Elasto-Plastic Analysis for Reinforced Concrete Beams350
15.2.1 Material Modelling350
15.2.2 Material Modeling of Concrete352
15.2.3 Reinforcing Steel353
15.2.4 Structural Modeling353
15.2.5 Simply Supported Beams353
15.3 Punching Shear Failure Analysis of Flat Slabs by UST355
15.3.1 Slab-Column Connections355
15.3.2 Conclusions356
15.4 Elasto-Plastic Analysis for an Ordinary RC Beam357
15.5 Elasto-Plastic Analysis of an RC Deep Beam359
15.6 Elasto-Plastic Analysis of an RC Box Sectional Beam361
15.7 Summary365
References366
16 Stability Analysis of Underground Caverns Based on the Unified Strength Theory369
16.1 Introduction369
16.2 Huanren Pumped-Storage Powerhouse and Geology370
16.2.1 The Powerhouse Region370
16.2.2 In Situ Stress Measurement in Huanren Pumped Storage Powerhouse371
16.3 Comparison of Failure Criteria for Geomaterials371
16.4 Determination of Rock Mass Strength Parameters373
16.5 Constitutive Formulation of Unified Strength Theory Used for Fast Lagrangian Analysis374
16.6 Development of Unified Strength Theory Model in Flac-3D379
16.7 Test of User-Defined Unified Strength Theory Constitutive Model in Flac-3D379
16.8 Stability Analysis of Underground Powerhouse382
16.8.1 Generation of Numerical Model and Selection of Parameters382
16.8.2 Simulations for Different Excavation Schemes383
16.9 Excavation and Support Modeling390
16.10 Comparison of the Stabilities in these Models with Different b Values393
16.11 Conclusions397
References398
17 Stability of Slope399
17.1 Introduction399
17.2 Effect of Yield Criterion on the Analysis of a Slope402
17.3 Stability of Three Gorges High Slope407
17.4 Stability of a Vertical Cut410
17.5 Stability for a Slope of a Highway411
References415
18 Unified Strength Theory and FLAC417
18.1 Introduction417
18.2 Unified Strength Theory Constitutive Model419
18.3 Governing Equation420
18.3.1 Balance Equation420
18.3.2 Explicit Numerical Procedure422
18.3.3 Constitutive Equation422
18.4 Unified Elasto-Plastic Constitutive Model425
18.4.1 Unified Elasto-Plastic Constitutive Model425
18.4.2 The Key to Implementation of the Constitutive Model428
18.5 Calculation and Analysis428
18.5.1 Slope Stability Analysis428
18.5.1.1 Associated Flow Rule429
18.5.1.2 Non-associated Flow Rule431
18.5.2 Thick-Walled Cylinder under Internal Pressure432
18.5.3 Bearing Capacity of Strip Footings434
18.6 Three Dimensional Simulation of a Large Landslide439
18.7 Conclusions444
References445
19 Mesomechanics and Multiscale Modelling for Yield Surface447
19.1 Introduction447
19.2 Interaction Yield Surface of Structures450
19.3 Models in Mesomechanics and Macromechanics451
19.3.1 RVE and HEM Model451
19.3.2 Equivalent Inclusion Model451
19.3.3 CSA and CCA Models451
19.3.4 Gurson Homogenized Model452
19.3.5 Periodic Distribution Model452
19.3.6 PHA Model and 3-Fold Axissymmetrical Model452
19.3.7 A Unit Cell of Masonry452
19.3.8 Topological Disorder Models452
19.3.9 Random Field Models of Heterogeneous Materials453
19.4 Failure Surface for Cellular Materials under Multiaxial Loads and Damage Surfaces ofa Spheroidized Graphite Cast Iron453
19.5 Mesomechanics Analysis of Composite Using UST455
19.6 Multiscale Analysis of Yield Criterion of Metallic Glass Based on Atomistic Basis(Schuh and Lund,2003)457
19.7 Multiscale Analysis of Yield Criterion of Molybdenum and Tungsten Based on Atomistic Basis (Groger et al,2008)459
19.8 Phase Transformation Yield Criterion of Shape-Memory Alloys459
19.9 Atomic-Scale Study of Yield Criterion in Nanocrystalline CU461
19.10 A General Yield Criteria for Unit Cell in Multiscale Plasticity463
19.11 Virtual Material Testing Based on Crystal Plasticity Finite Element Simulations468
19.12 Meso-Mechanical Analysis of Failure Criterion for Concrete469
19.13 Brief Summary472
References473
20 Miscellaneous Issues:Ancient Structures,Propellant of Solid Rocket,Parts of Rocket and Generator481
20.1 Introduction481
20.2 Stability of Ancient City Wall in Xi'an484
20.3 Stability of the Foundation of Ancient Pagoda487
20.3.1 Structure of Foundation of Ancient Pagoda487
20.3.2 The Effect of Yield Criterion on Plastic Zone of Soil Foundation of Pagoda489
20.4 Plastic Analysis of Thick-Walled Cylinder492
20.5 Plastic Analysis of the Structural Part of a Rocket494
20.6 Numerical Analysis of Rocket Motor Grain496
20.7 3D Numerical Simulation for a Solid Rocket Motor499
20.8 Structural Part of the Generator of Nuclear Power Station503
20.9 The Effect of Yield Criterion on the Spread of the Shear Strain of Structure504
20.10 About the Unified Strength Theory:Reviews and Comments505
20.11 Signification and Determination of the UST Parameterb510
20.11.1 Signification of the UST Parameter b510
20.11.2 Determination of the UST Parameter b512
20.12 BriefSummary514
References517
Index521
热门推荐
- 1961334.html
- 2918449.html
- 2768755.html
- 953018.html
- 557011.html
- 3641392.html
- 880347.html
- 2464246.html
- 1890834.html
- 3389274.html
- http://www.ickdjs.cc/book_2083086.html
- http://www.ickdjs.cc/book_2074947.html
- http://www.ickdjs.cc/book_1871827.html
- http://www.ickdjs.cc/book_2571103.html
- http://www.ickdjs.cc/book_2799851.html
- http://www.ickdjs.cc/book_966293.html
- http://www.ickdjs.cc/book_3255235.html
- http://www.ickdjs.cc/book_3319893.html
- http://www.ickdjs.cc/book_76212.html
- http://www.ickdjs.cc/book_3202091.html